A Tale of Two Extremes: Contrasting NH₃ at the Bakersfield and Pasadena Supersites

University of Toronto

Ammonia and Particle Formation

Highly coupled and non-linear

Historical CARB data

NH₃ in the San Joaquin Valley

(a) NH₃ concentration at 700m (IASI morning orbit)

Mobile Emissions of NH₃

FIGURE 5. Total fixed nitrogen in g/kg (line and triangles, right axis) with the molar percent composition distributed between the NO_x (bowties, left axis) component and the NH_3 component (circles, left axis).

Mobile emissions of NH₃ comparable to NO_x in new, aggressively driven, vehicles

AIM-IC in Bakersfield

QC-TILDAS in Pasadena

Ammonia Time Series

7 -

6

5

2

0

NH₃ (bbb)

Diurnal Profiles of NH_x Partitioning

AMS data from Jimenez group, CU

Temperature and NH₃ at Bakersfield

Comparison with Model

Historical Record at Bakersfield

Summary

- NH_x is ~4 times larger at Bakersfield than at Pasadena
- different processes control NH₃ at the two ground sites
- CMAQ does not represent Bakersfield NH₃ well (emissions or partitioning)

Additional Questions

- aerosol pH
- influence of/on organic acids
- relative contributions of NH₃ emissions sources

Draft Final Report DRI Document No. 2497

July 29, 2005

Prepared by:

Judith C. Chow
L.-W. Antony Chen
Douglas H. Lowenthal
Prakash Doraiswamy
Kihong Park
Steven D. Kohl
Dana L. Trimble
John G. Watson

Figure 4-7. Seasonal variation of total ammonium (NH₃ + NH₄⁺) concentration and NH₃/NH₄⁺ ratio at Fresno during CRPAQS. Note that the y-axis on the right has a logarithm scale.

FREE AMMONIA, FA = TA - 2 * TS
=
$$[NH_4^+] + [NH_{3(g)}] - 2 * [SO_4^{2-}]$$

High NH₃, low TS and TN

Nitrate partitioning driven mainly by meteorology

Conditions:

RH = 40 %, T = 275 – 315 K, TN = 20 nmol m^{-3} , TS = 21 nmol m^{-3} , TA = 0 - 2750 nmol m^{-3} FA values during the campaign = (-42 nmol m^{-3} to 2750 nmol m^{-3})

Pasadena data on chemical map generated assuming TN = 100 nmol m^{-3} TN actually ranges from 10 - 700 and correlates with FA

